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ABSTRACT

]" t" "_ QJ'f

The 3-D image reconstruction from cone-beam projections in computerized

tomography leads naturally, in the case of radial symmetry, to the study of Abel-
type integral equations. If the experimental information is obtained from measured

data, on a discrete set of points, special methods are needed in order to restore

continuity with respect to the data. A new combined Regularized-Adjoint-Conjugate
Gradient algorithm (introduced in this work), together with two different

implementations of the Mollification Method (one based on a data filtering
technique and the other on the mollification of the kernel function) and a

regularization by truncation method (initially proposed for 2-D ray sample schemes
and more recently extended to 3-D cone-beam image reconstruction) are extensively

tested and compared for accuracy and numerical stability as functions of the level
of noise in the data.

L

1. INTRODUCTION.

The difficult problem of determining the structure of an object from its 3-D

cone-beam data projections is currently receiving considerable attention (see B. D.
Smith, Ref [16]). When the object is known to be radially symmetric, its structure

can be determined by using the inverse Abel transform. If the object does not have

radial symmetry, it can be reconstructed, in principle, by using the inverse Radon
transform.

Abel's integral equation can be written as

X

f(x) = J"g(s) (x - s)-I/2 ds, 0 -¢x -¢I, (I)
o

where the function f(x) is the data function and g(s) is the unknown function. The

exact solution is given by

1 X

g(x) = - J" f'(s) (x - s) -*/2 ds, 0 -_ x -_ I, (2)
/I o

provided the derivative exists and f(0) = 0. (See R. Gorenflo and S. Vessella, Ref
[61).

It is well-known (References [I], [2], [4] and [6]) that Abel's integral equation

is somewhat ill-posed, that is, small errors in the data f(x) might cause large
errors in the computed solution g(x). Consequently, the direct use of formula (2)

is very limited and special methods are needed.
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F This paper has two main purposes. First, we present and briefly analyze a new|

stable method for the numerical solution of Abel's integral equation, Method I, by

weakly coupling the original problem with its adjoint formulation obtaining a
regularized system of linear equations which is then successfully solved by the

conjugate gradient method. Second, we test and compare the numerical stability and
the accuracy of Method I and three other known algorithms on several benchmark

examples as a function of the amount of noise in the data.
Method II in this paper (see D. A. Murio, Ref [121), is obtained by initially

filtering the noisy data by discrete convolution with a suitable averaging kernel
instead of mollifying the kernel function in equation (2), Method Ill, as required

by K. Miller (Refs [IO1 and [lll) in his reconstruction algorithm for 2-D ray-

sampling schemes. Method IV has been implemented by D. A. Murio, D. Hinestroza and
C. E. Mejfa (Ref [131) based on a regularization by truncation technique initially

proposed by B. K. P. Horn (Ref [91) and recently extended to 3-D image
reconstruction methods from cone-beam projections by B. D. Smith (Ref [151).

In Section 2 we introduce the new Method I, analyze the consistency and stability
properties of the algorithm and obtain an upper bound for the error. In Section 3,

we describe the other procedures and discuss in detail the numerical implementation
of all the methods involved. Section 4 is devoted to the numerical testing of the

four algorithms and the presentation of several useful comparisons involving
Methods I, II, III and IV. Some conclusions are included in Section 5.

L

2. REGULARIZED-ADJOINT-CONJUGATE GRADIENT METHOD. (Method I).

In a more abstract setting, equation (11 can be written as

Ag = f,

where A represents the Abel integral operator. For suitable functions h and q, the

adjoint operator A" is defined by

1
A*h(x) = q(x) = J" h(s) (s-x) -I/z ds, 0 -< x -< i,

X

and it is clear that the homogeneous equation A*h = 0 has the unique solution h(x)

= 0, 0 _ x _- I. Hence, as a direct consequence of Fredholm alternative (see P. R.

Garabedian, Ref [S]), solving the singular equation Ag = f for smooth but

otherwise arbitrary data functions f satisfying f(O) = O, is equivalent to solve
the uncoupled system of linear integral equations

A g= f* h = O. (3)

In order to help stabilize the inverse problem, we propose to solve, instead of

(3), the weakly coupled system of equations

0 < a << i, (4)

by successive approximations. This system is equivalent to

J
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Au - av = f
_x/3A'v + _2/3u - u + u = 0,

where /3 is any nonzero real number to be determined. We elect /3 to depend on the

iteration and rewrite the previous system as

Un - 0iVn = f

nA'Vn + 0t2/jnUn - u n + Un+ 1 = O,

to obtain

av n = Au n - f
Un. 1 U n - /3n[_2Un + A'(CtVn)] ,

n = 0,1,2 ..... (5)

uo arbitrary, usually 0.

Remarks:

I. Each iteration in (5) involves the solution of two "direct" problems: one

corresponding to the original operator, Au n, and the other associated with the

adjoint operator, A'(aVn).

2. Elimination of v in system (4) leads to the set of normal equations, with I

indicating the identity operator,

(A'A + c_ZI)u = A'f, (6)

which characterizes the minimum of the zero order Tikhonov functional (see C. W.

Groetsch, Ref [7])
1

J(u) = - ( II Au - f ll 2 + u2 II u ll 2 ). (7)
2

3. The gradient of the functional (7) is given by

VJ(u) = _2u + A*(Au - f)

and it is easily computed if the solution of the adjoint problem is known. In fact,

taking into consideration (4), we can write VJ(u) = aZu + A'(c_v), and for each

iteration we get

VJ(un) = _Zun + A*(aVn). (8)

k

These considerations allow us to choose /3n, for each n, in such a manner that

system (5) can now be solved by the Conjugate Gradient Method (W. M. Patterson, Ref
[14]).

The complete abstract algorithm, after introducing the notations
1

(f,g) = I f(x)g(x) dx and I[ f II = (f,f)l/2, corresponding to the inner product and
o

J
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F norm respectively of square integrable functions on the interval

follows:

[O,1], is as I

For n = 0,

O) Set u o = 0 and choose a > 0.

1) Compute Au o, i.e., solve the original direct problem.

2) Compute the residual _v o = Au o - f.

3) Compute A*(_Vo), i.e., solve the direct adjoint problem.

4) Evaluate the gradient do : _J(u o) using formula (8).

II do II z
5) Set r o =

_Zlld ollz +llAd ollz

6) Update: u I = uo - rod o.

For n = 1,2 .....

1') Solve the original direct problem Au n.

2') Compute the residual _v n = Au n - f.

3'1 Solve the direct adjoint problem A'(_vn).

4') Evaluate the gradient _/J(u n) using formula (BI.

II VJ(u n) II z
4") Compute d n = VJ(un) + tin-l"

II Va(u.__) II z

(VJ(un),d n)

5') Set r n =

_z II d_ II 2 . II Ad n II z

6') Update: Un+ 1 = U n - rnd n.

/

Stability of Method I.

We consider now the more realistic situation when instead of the exact data

function f, we only know some noisy data function fc satisfying

IIf- fCll__ c.

In this section the unique solution of system (4) will be denoted by u_ to

emphasize its dependency on the regularization parameter _ and the level of noise
in the data e. Assuming that the ideal problem (i) for errorless data f has the

unique solution g = A-If, since u_ satisfies equation (6), with f replaced by fe,

it follows from well-known estimates in the theory of Tikhonov regularization that

II g - ua II = Co a */2, and II u s - u_ II _ c o_-'/z,

for some constant C O > 0, independent of o_; ua denotes the regularized solution

when e : 0.

Combining these estimates, we obtain the error upper bound

]
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II g - u_ll -_ CO =t,'z + c _-l,'z

and choosing _ = C;c for some constant C 1 > 0, it follows that

II g - ue_ll -_ (% + ci _) _x_'z (9)

which shows that, theoretically, as the quality of the data becomes better and

better (c -_ 0), we get convergence with rate _t/z. See C. W. Groetsch (Ref [7]) for
details.

The convergence of the sequence of iterates u_, n from system (S), with lgn as

discussed above, to the unique solution u,e of the canonical equations (6) as n -_

is well documented, for instance, in the work of C. W. Groetsch, J. T. King and D.

A. Murio (Ref [8]) and will not be pursued further here.
The finite dimensional version of the combined Regularized-Adjoint-Conjugate

Gradient algorithm will be discussed in the next Section.

3. METHODS II, Ill AND IV. NUMERICAL IMPLEMENTATIONS.

Method II in this paper is based on attempting to reconstruct a mollified version
of the solution g in equation (2). After introducing the 8-mollifier

1 -1/2

pS{x} = - r[ exp[-xZ/8 z] {10)
8

of "blurring radius" 6 and extending the data function fe to the interval
[-38,1+38] in such a way that it decays smoothly to zero on [1,1+3c3] and it is zero

on [-36,0], an approximate solution is defined by

1 x

gC(X)o = -nJ'0(pS" fe)'(s) (x - s)-I/2 ds, 0 -<x -< I. (II}

Here,
= d x.38 d

(p_" fe)'(x) = J" -- [pc3(x- s) re(s)] ds _-J" -- [p_(x - s) re(s)] ds,-m dx x-3_ dx

showing that the main idea of the method consists on replacing the noisy data

function fc by the filtered data function ps" ft. It is important to notice that

the radius of mollification, 5, can be uniquely and automatically determined as a
function of the amount of noise in the data, c, based in the fact that there is a

unique value of the regularizing parameter _ for which

II Pa" fe _ fe II = e. (12)

Under very mild conditions, i.e., if fe is continuous and if the second
derivative of the errorless data function f is uniformly bounded by Mz in the

L J
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F sample interval (0,1), the following error estimate holds

6
C

II g_ - g II -< - (5 M 2 + c/_).
Tt

(13)

The complete abstract algorithm is as follows:

1) Automatically determine the unique radius of mollification c3 as a function of

the level of noise _.

2) Smoothly extend the noisy data function fc to [-3_,1+3_].

3) Compute the derivative of the filtered data function P6* re"

4) Compute g_ using equation (11).

For more details and further discussions, the reader should consult D. A. Murio,

Ref [12].

Method IIl is based on the Mollification Method as originally proposed by K.

Miller (Refs [10] and [11]) for 2-D ray-sampling reconstruction geometries. First

we notice that the exact formula (2) can be written

I

g(x) = - (k * f')(x), O---- X --_ i,

where k(t) = t -1/z represents the kernel function. The mollification of the last

equation with the averaging kernel defined in (10) gives

1

(Pc3* g)Cx) = - (Pc3* k * f')(x).
/[

In Method II, we associated the right-hand side of this equation as k* (p6" f') =

k* (p6 m f)'; for Miller's idea we associate as (Pds* k) * f'= (p6" k)'* f and obtain

the approximate reconstruction solution

I X

g_(x) = n- S0(Ps" k)'(x - s) fe(s) ds,
0 -_ x -_ 1. (14)

Mathematically, formulae (II), for Method II, and (14), for Method III, are

identical. Consequently, the theoretical error bound (13) derived for Method II

also applies for Method IIl.

The complete abstract algorithm for Method Ill is given by:

I) Choose 8 > O,

2) Compute the mollified kernel pc3 e k.

3) Evaluate the derivative of the mollified kernel ps* k.

4) Compute g_ using equation (14).

Remarks:

I. In Method Ill, the mollified kernel is computed only once and is used repeatedly

for different data functions.

L J



245

Third International Conference on Inverse Design Concepts and Optimmation in Engineenng Sciences

(ICIDES-III). Editor: G.S. Dulikravich. Washineton D.C.. October 23-25. 1991 I

F 2. Method II requires a filtering of each data function and the corresponding I

parameter is automatically selected according to the quality of the measured data.
3. The selection of the mollification parameter in Method III requires further

consideration.

Method IV is based on a reconstruction technique initially proposed by B. K. P.

Horn (Ref [9]) for arbitrary 2-D ray schemes and more recently extended to 3-D

image reconstruction methods from cone-beam projections by B. D. Smith (Ref [15]).

Integrating by parts equation (2), we obtain the equivalent expression

I x I x-_" ,_= - lim _" _-3/zf f(s) ds - - f f(s)(x-s)-3/Zdsg(x) /rt _'_o k x-_' 2 o
0_x_l.

The approximate inverse Abel transform is now obtained by eliminating the limit

procedure in the last expression, i.e.,

1 ( x i -_'fC(s ) ds },g_,(X) ---- -- ,_,-3/2 j- fC(s) ds - - ._ (x - s) -3/z
rt x-_" 2 o

0 -< x -< 1. (15)

By requiring the second derivative of the errorless data function f and the

measured data function fe to be continuous, we obtain the following error estimate

5 _r]/z 2

II grc _ g II -_ -2 --Mitt + -n c _,-1/z + O(_ra/z),
(16)

where M1 is a uniform bound for f' on the interval (O,1). For a proof of this

assertion and a complete analysis of Method IV, see D. A. Murio, D. Hinestroza and

C. E. Mejia (Ref [13]).

The complete abstract algorithm for Method IV is reduced to

1) Choose _r > O.

c using formula (15).2) Compute g_r

Remark:

The error estimates (9), (13) and (16) show that all the methods are consistent

and stable with respect to perturbations in the data, in the L z norm, for a fixed

choice of the several regularization parameters _, 8 or ?.

Numerical Implementations.
Since in practice only a discrete set of data points is generally available, we

assume that the data function fc is a discrete function measured at equally spaced

sample points on the interval [0,11. For h > 0 and Nh = 1, we let xj = jh and

denote fC(x 1) = f_, j = 0,1 ..... N, with f_ = O.

Method h

Discretization leads to a finite dimensional version of the combined

Regularized-Adjoint-Conjugate Gradient algorithm of Section 2. The operators A and

A" are represented now by a matrix A and its transpose A T, respectively. The

l l
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approximate discrete solution urn,a, obtained after m iterations, the gradient

VJ(Um}, dm, r m, u0 and the residual cxvm are now N-dimensional real vectors. From

equation (1), a simple discretization gives the lower triangular system of linear
equations

hy e eaj+l_l(Um,0c) l = fj ,
1=1

where

aj = (jh) -l/z, j = 1,2 ..... N,

indicates the (j-b subdiagonal of the N x N matrix A.

The discrete algorithm for the Conjugate Gradient method (see P. G. Ciarlet, Ref

[3]) follows exactly the steps described previously in Section 2, and we only have
to add the necessary stopping criteria, given by

II c cUm,oc Um-l,cx II z ": TOL II- - Um,_x II z,

where T0L is a small positive tolerance parameter entered by the user and

1 },/z= _ N [f j]2Ilfllz _1 .1=o (17)

is the discrete 1z norm on [0,1].

Method II:

[

C

To numerically approximate g¢3(x), a quadrature formula for the convolution

equation (11) is required. The objective is to introduce a simple approximation and
avoid any artificial smoothing in the process.

Given xj, j = 0,1 ..... N, we define

qe(x } = y j el=ofl¢l(x), 0 -<x -- xj,

a piecewise constant interpolation of fC(x) at the grid points xj. Here,

1, 0-< x -< h/2¢°(x) = 0, otherwise ' 1, xj-h/2 -- x - xj¢j(x) = 0, otherwise

and

1, xl-h/2 -< x - xl+h/2el(X) = 0, otherwise , i = 1,2 ..... j-1.

The computational algorithm is as follows:

After smoothly extending the discrete data function to any interval of interest
containing the sample interval [0,1], we determine the radius of mollification 6 as

/



2_7

Third International Conference on Inverse Design Concepts and Optimization in Engineenng Sciences

(ICIDES-HIt. Editor: G.S. Dulikravich. Washin-oton D.C.. October 23-25, 1991
I

r a function of the amount of noise in the data c by solving the discrete version of I

equation (12) using the bisection method. Next, we substitute fc by its

interpolation qC and compute the approximation to P8 . fe given by the discrete

convolution

k k

where the weights m _. are evaluated exactly. A discrete version of the derivative of
J

the discrete filtered data function is obtained using centered finite differences.
c

Finally, the discrete approximation to gc5 is calculated by discretely convolving

the computed derivative approximation against the sampled data function (see

equation (11)). For a detailed analysis of this algorithm, the reader is referred
to D. A. Murio (Ref [12]).

Method III:

The convolution pc5 • k requires an extension of the singular kernel k for values

of x less or equal to zero. In our implementation we use the following symmetric
extension:

k(O) = 2h -wz, k(-x) = k(x), x > 0.

The discrete approximation is now straightforward:

With sj = (P¢5 * k)(xj), j = O,1 ..... N, the discrete convolution formula

corresponding to equation (14) is

g_,a(o) = o,

and

g_,a(xj) = ! T.j fe _ ren k=l Sj-k( k+1 k-I )/2'

I
g_,a(1) = g_,cs(x.__) + - so(f e - f[_,),

7[

j = 1,2 .... N-1

where g[,c5 is the approximate inverse Abel transform at the grid points.

Method IV:

In this case, we first construct a piecewise linear interpolation of f¢(x) at

the grid points x 1, given by

q¢(x) = Z j f_ el(x),
1=0

0 -< X --<Xj,

where the functions @l(x), i = 0,1 ..... N are given by

/ 1
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{ _-{ l÷ x-xj/Jh,xj_l"-x --×jl-x/h, 0 -_ x <-h _]tx _Co(X)

0 otherw i se, 0 otherwise,

and

l+(x-xi)/h, xl_ 1 : x sx l_bl(x) = l_(x_xl)/h, x I -_ _ xi. x

0 otherwise, i = 1,2 ..... j.

We notice that the approximate solution g_(x) of formula (15) can also be

written as

1

g_r(x) = - (H_* fC)(x), 0 -_ x -_ 1,
7I

(18)

where the kernel H_¢ is defined by

H_,(t) [-2 t-3/z'

The quadrature formula for equation (18) is obtained by directly convolving the

kernel function H_, with qC as indicated below. Thus, the computed solution at the

grid points is given by

1 1 c b._(xj),g_,h(Xj) = -- (H_," qC)(xj) = _ _3 fl
1_ 11 |=O

where the weights

b_l(Xj) = fxj H_,(xj - s) _bl(S) ds
o

are evaluated exactly for i = 0,1 ..... j. The readers interested in further details

should consult D. A. Murio, D. Hinestroza and C. E. Mejia (Ref [13]).

4. NUMERICAL RESULTS AND COMPARISON.

In this section we describe the tests that have been implemented in order to

compare the performance of the methods introduced in previous sections.

We tested the methods on three examples. In all of them, the exact data

function is denoted f(x) and the noisy data function re(x) is obtained by adding an

c random error to f(x), that is, fC(xj) = f(xj) + ecrj, where x 3 = jh, j =

0,1 ..... N; Nh = 1 and _j is a uniform random variable with values in [-1,1] such

that

max I fC(xj ) - f(xj) I -< c.
0__j__N

The exact inverse Abel transform is denoted g(x) and its approximation given by

L J
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F
any of the methods is denoted g_,h(X), where p represents the regularization

parameter of the particular method.

Example 1:

As a first example .we consider the data function f(x) = x with exact inverse
2

Abel transform g(x) - x l/z. This data function satisfies all the necessary

hypotheses for convergence estimates of Sections 2 and 3.

Example 2:

The data function

f
f(x) = _ 2xZ O_x< 1/2

L l-2(1-x)Zl 1/2 _x_l,

is only once continuously differentiable on [0,1], partially violating the required
conditions for the theoretical error analysis of Sections 2 and 3. In this example,

the exact inverse Abel transform is given by

(16/3rt)x /2, O-_x 1/2g(x)= (16/3rt)x 3/2 + (16/3n) (x-l/2) 3/2- (8/rt)(x-l/2)l/Z(2x-1),

1/2 <x-_l.

Example 3:

The data function is defined as follows:

O, 0 - x <0.2,
f(x) = 2(x-0.2) l/z, 0.2 - x _ 0.6,

2(x-0.2) l/z- 2(x-0.6) t/z 0,6 < x _ 1.

Its first derivative is not continuous on [0,I], strongly violating the

necessary hypotheses for the convergence estimates of Sections 2 and 3. The exact
inverse Abel transform is given by

f

g(x) = _ I, 0.2 -- x -0.6,

t 0, otherwise.

The four methods were tested for three different values of N, N = 200, 500 and

1000, three different values of c, _ = 0.0, 0.005 and 0.01, and several values of

the corresponding regularization parameters. The algorithms were extensively used
and we numerically determined appropriate values for the regularization parameters

for each method, except for Method II where the radius of mollification was
selected automatically. These quasi-optimal parameter values are used in the tables

and figures below. J
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Different values of _ provide a crucial test for stability. Tables 1, 2 and 3

illustrate this point. The error norms in the tables are computed as II g - g_,hll_ 2

according to definition (1"7). In the tables, each row corresponds to one of the
methods with a fixed regularization parameter, and shows the change in the error
norm due to changes in the level of noise in the data. The presented numerical

results indicate stability. The columns in the tables allow us to compare the
performance of the methods under similar conditions.

Figures 1 to 4 show the reconstructions of the step function of Example 3

provided by the four methods for the same number of sample data points, N = 500,
the same noise level, c = 0.01, and quasi-optimal regularization parameters. The

qualitative behavior is quite good taken into consideration the high amount of
noise in the data.

5. CONCLUSIONS

The following are some conclusions based on the implementations of the methods
presented in this paper:

Consistency and stability of the four methods is clearly confirmed throughout

experimentation and very weak dependency on the parameter N is observed.
Method II provides an automatic mechanism to select the radius of mollification

as a function of the level of noise in the data. Furthermore, as a consequence of
the stability of the four methods, it is easy to find, by numerical

experimentation,lower and upper bounds for quasi-optimal regularization parameters.
An advantage of method III over method II is that the mollification of the

kernel is computed only once and can be used for different data functions. Methods
II applies mollification to each data set.

All the results are very competitive. However, mollification solutions are

slightly better in terms of accuracy and method IV, the easiest to implement, seems
to be more sensitive to perturbations in the data.
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Method Parameter c = 0.0 c = 0.005 c = 0.01

I _ = 0.08 0.0279 0.0294 0.0359

II 6 = 0.008 0.0000 0.0048 0.0096

III 6 = 0.008 0.0005 0.0137 0.0274

IV _, = 0.004 0.0302 0.0315 0.0349

Table 1. Error Norms as functions of c

in Example 1 with N = 500

Method Parameter c = 0.0 c = 0.OOS e = 0.01

I _ = 0.08 0.0275 0.0293 0.0365

II 6 = 0.008 0.0001 0.0048 0.0096

III 6 = 0.008 O.O00S 0.0136 0.0273

IV _" = 0.001 0.0174 0.0263 0.0431

Table 2. Error Norms as functions of c

in Example 2 with N = 500

_MethodlParameter c = 0.0
'I,

I _ = 0.08 0.0615

II 6 = 0.008 0.0052

III dS = 0.008 0.0295

IV _" = 0.001 0.0648

c = 0.005 c = 0.01

0.0618 0.0641

O. 0052 O. 0053

0.0330 0.0411
0.0678 0.0760

Table 3. Error Norms as functions of c

in Example 3 with N = 500
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Fig. 1 Reconstruction with Method ]

E = 0.01, Oc = 0.08, N = 500

Fig. 2 Reconstruction with Method It

= O.Ol, (S = 0.008, N = 500
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Fil. 3 Reconstructlon wlth Method Ill

C = 0.01, (_ = 0.008, N = 500

Fig. 4 Reconstruction with Method IV

£ = 0.001, _r = O.OOI, N = 500 J


